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1. Introduction

In this report we provide a normalized methodology to allow a significant statisti-
cal evaluation of the contaminant distribution in lightly polluted regions; in particular the
1980 sampling campaign in zone R is studied with an adeguate rationale(l).
The analysis of the pollution in regions of low contamination is more sensitive to the detai-
led mechanism responsible for the deposition of the contaminant in a given point and is most
strongly affected by the sensitivity of the instruments used for the analytical treatment.

2. Feature of the contaminant's distributions.
(2)

In a previous paper ' we have shown
to describe the "local" behaviour of the contaminant.

(2)
In a previous paper ' we have shown that a Poisson distribution is not inadeguate

On the other hand the most general mechanism responsible for the falling of TCDD1'' droplets
on the ground is bound by the following conditions:

A - The amount of TCDD in a sample (having an area S=70 cm ) depends upon the deposi
tion on S of a finite number n. of droplets, each of which has a variable con-
tent in TCDD. Thus, the average amount X. of TCDD in the sample i depends on :
1 - the number n. of droplets in that sample of area S.
2 - the "TCDD content" x. of that single droplet j: i.e.

X. = I x (1)

JBi»\

B - The values of n. and x. depend on the "TOTAL AMOUNT OF TCDD" included in the lo-
cal contaminating cloud causing the fall-out.

C - The value X. measured is to be considered as the cumulative value at infinite
time t = °°; i.e. the sum (or the integral) of very many tiny contributions £.
fallen between t = 0 and t = °°.



Discussing the reasons why different droplets may have different TCDD content, as well as dif-
ferent dimensions is not a matter of concern in the present paper. Nonetheless the mathemati-
cal consequences of the above hypotheses are clear: the observed value X. of TCDD is the sum
of finite number of contributions c :

V Vk <2'
where each C^ is the amount of TCDU deposited in a given finite time interval At^. Here the
£k's are not independent as they are proportional to the total TCDD content of the local
cloud, content which is decreasing obviously with time. Therefore:

q = A - oxcti) (3)
where X(t̂ ) is the amount of TCDD in the sample at time t^; A is the TCDD amount at t = 0 and
a a constant. Due to the linear relationship (3) the Central Limit Theorem^) implies that X
follows a logonormal distribution i.e. Y = ln(X) (X = TCDD in yg/m2) is gaussian distributed.
This theorem has general validity, however,in regions of low contamination,the effects of
wild possible fluctuations are more apparent than in highly polluted regions where, being lar_
ge the amount of TCDD present anyhow,the fluctuations are more limited. It is worth underlying
that adopting a "distribution in In x" implies a "loss in resolution" of the analysis since a
value (KI = 1000 x0), one thousand time larger than the average value has a log value (In x^)
only 7 units away from the average (In x0). In this report, therefore,we adopt a phenomenolo-
gical description using the behaviour in the heavily contaminated area (zone A) as a calibra-
tion of the poorer information in the low-contamination area (zone B and zone R).

3. Check of the distribution functions

Fig.s 1 show the experimental distributions of the TCDD content (in pg/m2) in zone
A (1976/77 fig. la) and zone R (1980 fig. lb). The two distributions display some common fea-
tures although they come from different data samples: one from a highly polluted zone investj_
gated immediately after the accident during 1976 and 1977; the other from a slightly polluted
zone investigated in 1980, four years later. The distributions shown can be reproduced by a
common curve f (z), function of the variable Z = x/xav defined as the ratio between the ob-
served contamination x and its average value xav (in spite of the fact that all data of fig.
lb would be well contained in the first bin of fig. la!). The function f(z) is of the type:

; f(z) = A(exp(-az) + B exp(-3z)) (4)

where: A = 4.27, 'B = 0.17, a = 18.07, B = 0.95.
The curve gives a good fit even for the data from zone R, except for x values close to zero.
During the different surveys, the level of TCDD content (in yg/nr in this case) may vary gi-
ving rise to a threshold below which its value cannot be neither measured nor detected. The
sample found in such a condition is classified as N.V. i.e. as "not visible", "not measura-
ble" or "not detectable", the reason for that being twofold: either because that sample
contains no contaminant or because the contaminant is contained below the instrument's thre-
shold. As a matter^of principle the "detection threshold" is decreasing with the time passing
and with the improvement of the analytical methods.
In the histogram of fig. lb the loss due to the N.V. samples is clearly seen.
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Fig. 1: Distributions of two contaminated samples:
a) HIGH contamination zone A 1976/77;
b) LOW contamination zone R 1930.
The full curves rapresent f(z) given by formula (4)
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Fig.2: Distribution o£ Y=ln(TCDD) in different zones:a) A 1976; b) A 1976/77; c)POLO 1977;
d) (j3+R)1976/77; e)R 1980; f)B 1980/81.Full lines: the gaussian logonormal distribution
with parameters riported in Tab.I. Average values indicated by arrows on the abscissa
and threshold values by arrows on gaussian curves.
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Fig .3: Distributions of the fluctuations around the logonormal curves,for the same samples of
- -- •• • T - _ ^ - i - - _ i * «^<-4m«4.« ^r «-Ko -f-Vri-oe.il/-ilv} \m<> i IP Inrv^,")



4. Tne logonormal distributions.

An additional fact visible bota in fig. s. la and Ib is tnat tlie function f(z)given by
(4) does not account properly for the tails of large TCD1) values .This is due to the boundary
conditions discussed in the previous section and- forces the use of the log value to recover an
important reproducibility of the different data.
Fig.sZ give the distributions of the variable Y = ln(X) (X = TCD1) pg/m ): they are clearly
gaussian. In fig.s2 it is clear that in the lower part of the distributions (low TCDl)
values) there is a definite loss of events,due to the effect introduced by "N.V."events,
whicn cannot obviously be plotted; indeed any measuring device lias a threshold which fluctua-
tes within the resolution of the instrument. This implies that, for a given threshold Xt]1 of
the instrument, a sample with TCDD content X. greater then X̂ .̂  has a non-zero probability of
being classified amoung the "N.V." events, mostly when X^ is fairly close to Xtjr
Since we know that the distributions are logonormal , we fit the gaussian curves to the distri^
butions of fig.s 2 using only Y values larger than any possible "threshold limit" easy to
find. In fig.s 2 the limits adopted to fit the data are indicated (top arrows) and the gaus-
sian curves fitted are drawn. The numerical results obtained are collected i.n Table 1.

Table 1: FIT WITH GAUSSIAN DISTRIBUTIONS TO ln(X)

ZONL

A

A

B + R

i'OLO

R

B

YJiM

1976

1976/77

1976/77

1977

1980

1980/81

AVLRAG1: VALUli
of Y = InX

4.18

2.32

0.08

0.54

- 0.98

0.85

STANDARD DLVIAT10N
o (y)

2.5

2.47

1.23

1.54

0.92

0.64

i ' (x 2 )
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Interesting enough,in fig. 2f reproducing the most recent investigation using the most advan-
ced instrument in a region rather contaminated (zone B, 1980/81) no threshold is clearly visi-
ble and the gaussian gives a very good fit to all data. To clearly localize the "detection
threshold" we search for the Y value at which the discrepancy between the theoretical logonor-
mal distribution and the real data becomes systematically relevant.
In fig.s 3 the values of A are:

A = YTI1 * YEXP
the differences between theoretical and experimental values are plotted for the samples of
fig.s._2.



The values of A become clearly positive to the left of''the threshold limit, and compa
tible with zero to the right of it. In fig. 3b referring to the 1976/77 data in zone A, A
drops around the value In (TCDD) = -0.25 or X (TCDD) =0.78 yg/m .
In fig. 3e (1980 data in zone R) the drop is less prominent and occurs at In (TCDD) = -1.25
or X (TCDD) =0.3 Mg/m2.
These two values recovered by the present method are exactly the sensitivity limits declared
by the lavoratories| which performed the chemical analyses.

5. Uncontaminated samples in regions of low contamination.

In fig.s 2 the areas between the experimental histograms and the theoretical curves
give the best estimate of the number of events lost because the contaminant was present below
the threshold limit. If the number of N.V. events is larger than the above, the remaining N.V.
events can be considered as statistically uncontaminated.
Table II summarizes'the numerical values of this investigation.

Table II

ZONE

A 1976
A 1976/77
POLO 1977
B+R
R 1980
B 1980/81

THRESHOLD LIMIT

In X

3.0
0.0
-0.5
0.0
-1.0

X

20.08
1.0
0.6
1.0
0.37

NUMBER OF EVENTS

LOST

19-± 4
60 ± 8
26 ± 5
195 ± 14
125 ± 11

N.V.

32
37
60
391
503
8

NON CONI'AM.

13 i 5

34 ± 5
196 ± 14
378 i 11
8

3 STANDARD DEVIAT.
VALUE

In X

0.43
-1.38
-1.77
-1.76
-2.36
-0.11

X

1.53
0.25
0.17
0.17
0.09
0.89

What we learn from fig.s 2 and Table II is very instructive.
Each gaussian curve may give a 3 Standard Deviation (99.961 Confidence Level) indication that
the statistically uncontaminated samples contain less that the amount of contaminant listed in
the last column of Table II.

6. Conclusions.

As expected from the statements of Section 2 and from the Poisson-like origin of
the distributions, the average values and the standard deviations are correlated to one ano-
ther. We can therefore use all the statistical information available in fig.4 to search for
the regression line between the two variables, by fitting a linear equation:

o(X) = a Xav B (5)

(with: a = 0.379 and 6 = 1.178).
From fig.4 we learn that we cannot do better than a = 0 (i.e. zero fluctuation !) Therefore
the value ln(x)=-3.106 or x = 0.045 yg/m is the minimum possible detectable amount of conta-
minant with the methods presently in use as well as the maximal possible sensitivity of the
instrument.



Furtnemore knowing approximately the average value of X in a given region, fig.4 allow to
ciV

infer the corresponding value of a(Xav) i.e. to know all the parameters of the logonoriiial di.
stribution. From this information,risk limits may be se£. Such subject however cannot be deald
with in this short report.

-3

Fig .4: Summary of the maximum statistical available information:dispersion o(ln(x) vs.ln(x VJ
for all samples. The straight line is the regression line given by formula(5).The inter_
cept In(x0)gives the maximum sensitivity obtainable at present in analytical methods.
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